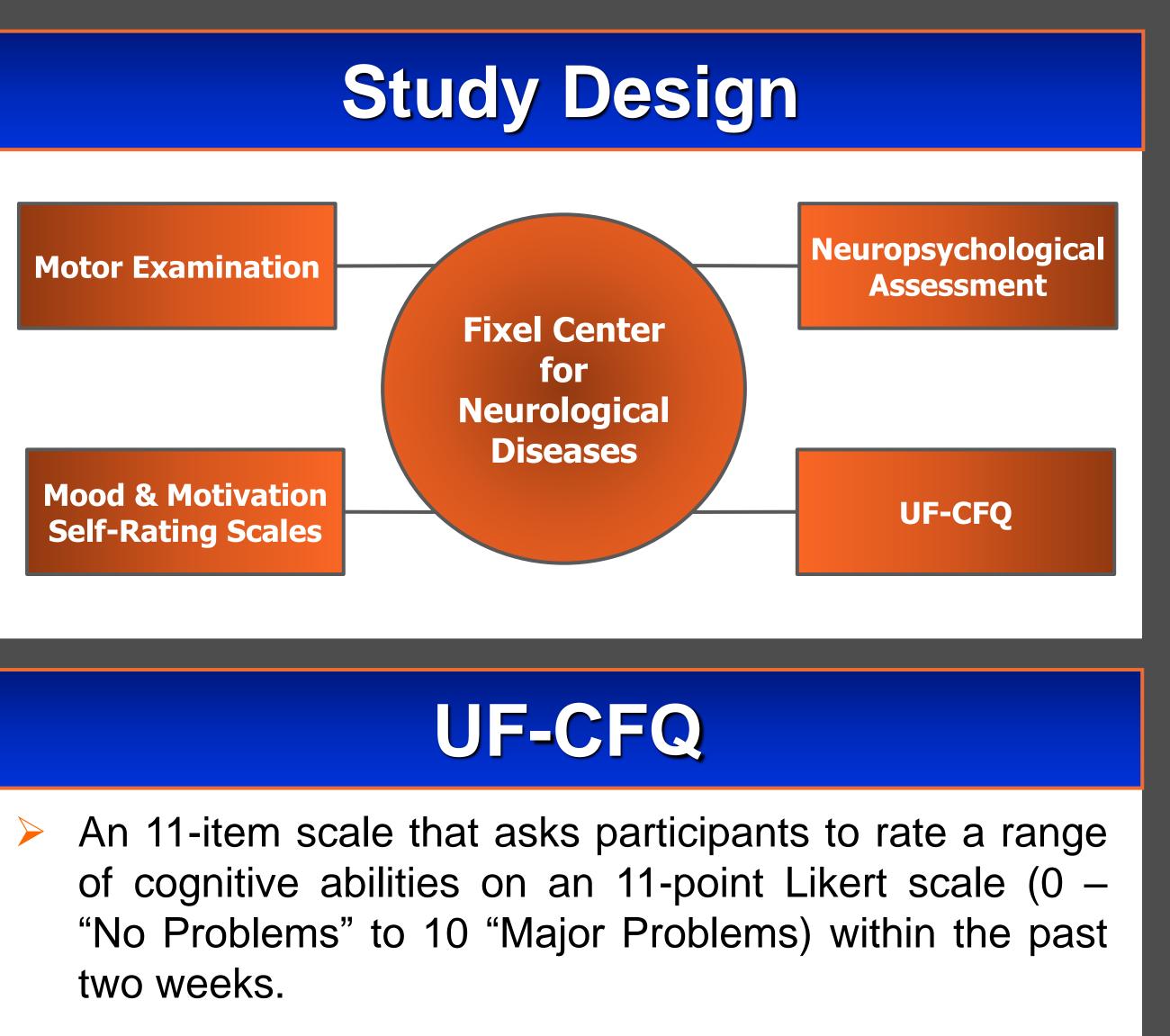
Subjective Cognitive Impairment in Parkinson's disease: **Evidence from the University of Florida-Cognitive Function Questionnaire (UF-CFQ)**

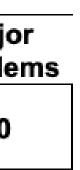


Introduction & Aims

 \succ The overall goal of this study was to examine the clinical utility of a multidomain scale, the UF-Cognitive Function Questionnaire (UF-CFQ) for assessing subjective cognitive impairment (SCI) in people with Parkinson disease (PD). Previous research suggests that PD is not associated with lack of awareness. Even so, few measures exist that specifically examine subjective cognitive complaints in PD.

Aims of the Current Study

- **Aim 1:** Identify the psychometric properties of the UF-CFQ
- **Aim 2:** Determine whether subgroups of nondemented PD patients could be identified, using empirically derived approaches (cluster analyses), based on responses on the UF-CFQ.


- Sample items shown below:
 - 1. How would you rate your ability to THINK QUICKLY?

No Problems		Minor Problems								Majo Proble
0	1	2	3	4	5	6	7	8	9	10
2. How wo	uld yo	u rate	your	ability t	o <u>PAY ATT</u>	ENTIC	<u>0N</u> ?			
2. How wo	uld yo	u rate	your	ability t	o <u>PAY ATT</u> Minor	ENTIC	<u>)N</u> ?			Мајо
	uld yo	u rate	your	-		ENTIC	<u>90</u> ?			Majo Proble

F.V. Lopez, E. Trifilio, B.Y. Rohl, S.Y. Pandya, J. Belser-Ehrlich, H. Fernando, B. M. Scott, N.R. McFarland, & D. Bowers

Department of Clinical and Health Psychology, and Neurology, Fixel Center of Neurological Diseases, **University of Florida, Gainesville, FL**

Cognitive Composites

ior ems Cognitive Measures: Five composite scores were generated using the following neuropsychological assessments:

Executive Function

Cognitive Domain

 Table 1. Neurocognitive domains

Attention / Working Memory

Language

Trail Making Test – Part B Stroop Color-Word (Golden Version) COWAT – Letter Fluency WAIS IV – Digit Span Boston Naming Test COWAT – Animal Fluency

Episodic Memory

Visuospatial

Recall Judgement Line of Orientation

Facial Recognition Test

Notes: COWAT = Controlled Oral Word Association Test; WAIS = Weschler Adult Intelligence Scale; WMS = Weschler Memory Scales.

Participants

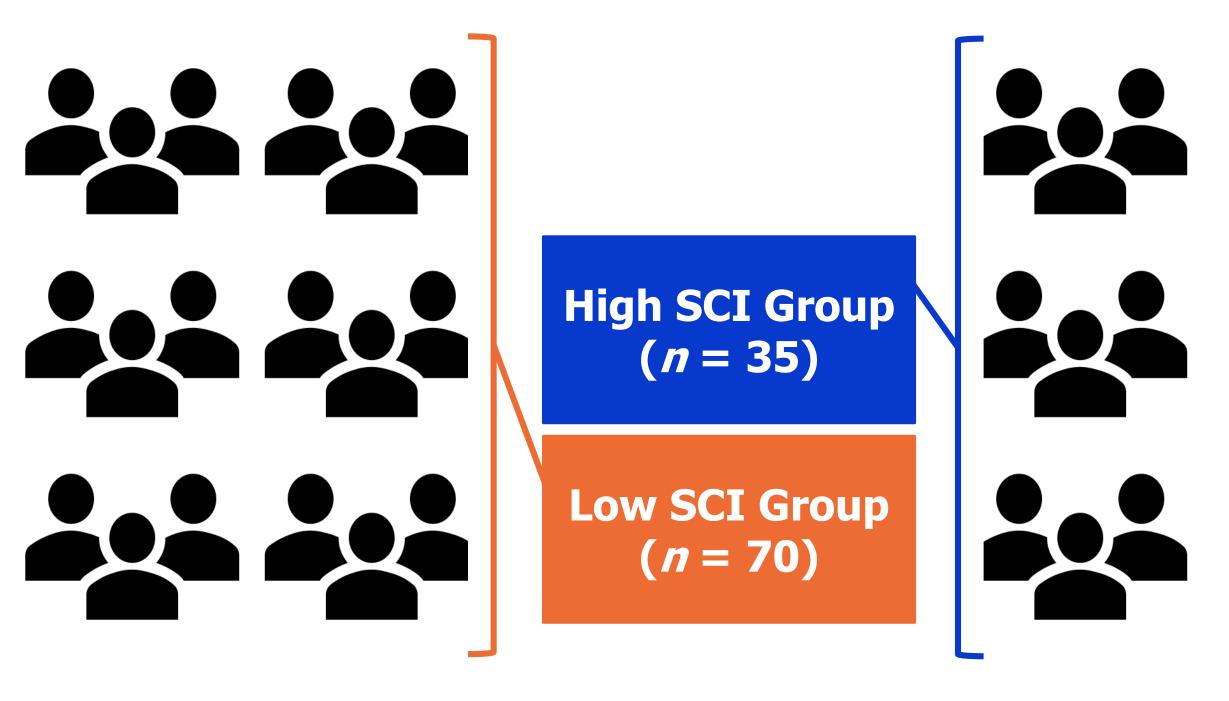
 Table 2. Demographics and data from self-report and cognitive composites of the

	Mean (SD)	Range
Demographics		
Age (Years)	63.8 (9.09)	44 – 79
Education (Years)	15.4 (2.51)	12 – 21
Gender (M/F)	67/38	_
Handedness (R/L)	96/9	—
Dementia Rating Scale – Total Score	137 (3.55)	130 – 143
WASI-2 Full Scale IQ Score	106.5 (13.0)	75 – 136
Disease Duration (Months)	117 (77.4)	3 – 388
UPDRS-Part III (Motor Severity)	23.9 (9.95)	4 - 60
[‡] DBS at Evaluation (Y/N)	22/83	_
Neurocognitive performance		
Executive Function	0.26 (0.84)	-1.67 – 1.72
Attention / Working Memory	0.27 (0.80)	-1.42 - 2.23
Visuospatial	0.12 (1.00)	-3.80 – 3.14
Language	0.11 (0.83)	-2.10 - 2.10
Delayed Memory	-0.67 (0.80)	-2.87 – 0.67
Self-reported mood and motivation total scores		
Apathy Scale	11.0 (5.67)	1-26
Beck Depression Inventory – II	9.64 (7.15)	0 – 33
State-Trait Anxiety Inventory – State Scale	37.2 (12.2)	0 - 65
State-Trait Anxiety Inventory – Trait Scale	35.7 (11.3)	20 – 73
Notes: WASI-2 = Wechsler Abbreviated Scale of Intelligence-Second	ond Edition; UPDRS = Unifie	ed Parkinson's disea
[‡] Patients with or without DBS did not significantly differ across vari	ables included in the current	study, all <i>p</i> s > .05.

Exclusion criteria: DRS total score < 130

Acknowledgements

This project was supported in part by funding from NIH including NINDS T32-NS82168 (Lopez; Bowers MPI) and the UF-Fixel Center for Neurological Diseases.


- Tasks and Brief Description WMS III – Logical Memory Delayed Recall Hopkins Verbal Learning Test – Delayed

Results

Aim 1: Psychometric Properties

- All 11 items on the UF-CFQ had strong internal consistency ($\alpha = .936$).
- Exploratory factor analysis revealed a single factor with an eigenvalue greater than 1.0 that accounted for 62.6% of the total variance, suggesting a unidimensional construct.
- Item and total scores on the UF-CFQ were unrelated to mood and motivation scores, disease-related characteristics, and neurocognitive performance.

Aim 2: SCI Subgroups

Conclusion

- \geq The current study used a data-driven approach (i.e., cluster analysis) to demonstrate that nondemented PD patients could be separated into distinct subgroups based on their subjective cognitive complaints from the CFQ.
- Namely, PD patients who endorsed greater cognitive complaints were older and had lower scores of estimated intellect.
- > In a random subset (n = 38), PD patients with greater cognitive complains tended to report greater difficulties with day-to-day functioning.
- Conversely, UF-CFQ item and total scores did not correspond with performance on objective cognitive measures.
- > In sum, SCI is a complex and potentially useful construct in PD, which underscores the need for the identification of a reliable, sensitive measure.

UFHealth FIXEL CENTER FOR NEUROLOGICAL DISEASES