Neuroanatomical Correlates of an Alternative Story Memory Test in Older Adults: The Left Trumps the Right

Erin Trifilio¹, Jared J. Tanner¹, London C. Butterfield², Paul C. Mangal¹, Jacqueline E. Maye¹, Alison Choi¹, Charles C. Moreno¹, Michael Marsiske¹, Catherine C. Price¹, & Dawn Bowers¹

¹Clinical and Health Psychology, University of Florida, Gainesville FL, ²Neuropsychology, BayCare Medical Group Suncoast Medical Clinic, St. Petersburg FL

Background & Aims

- Story memory tests are commonly used to test verbal memory
- Often subject to practice effects with subsequent testing
- Need for alternative story sets

Do you remember those two stories I read to you earlier?

To examine the relationship between 2 story sets: WMS-III Logical Memory & Newcomer Stories

What are the Newcomer Stories? A series of 8 brief stories developed by John Newcomer for use in memory research studies.

To determine neuroanatomic correlates of these 2 story sets (delayed recall). Are they similar or different?

Regions of interest: subregions of the L vs. R hippocampus

To learn whether thematic vs. verbatim scoring of the Newcomer stories (delayed recall) is better associated with:

Entorhinal thickness, hippocampal, subiculum, and presubiculum volumes

Participants & Methods

Overall Sample Imaging Subsample
N=190 N=134
Complete Story Data (N) 154 110

Complete Story Data (N)	154	110
Age (yrs)	71.5 (7.5)	69.4 (6.4)
Education (yrs)	15.8 (2.6)	15.5 (2.7)
Sex (M/F)	63/91	50/60
Race (% Caucasion)	94.8	93.6

Memory Tasks administered as part of a larger battery:

- 1) WMS-II Logical Memory I & II (Total possible points: 50)
- 2) Newcomer Stories immediate (I) & delayed (II) recall
 - Verbatim (Total possible points: 88)
 - Thematic (Total possible points: 54)

	Overall (N =154)	Imaging Subsample (N=110)
LM I	28.5(6.9)	29.1(6.8)
LM II	28.4(7.9)	28.8(8.3)
NS I (T)	29.1(8.7)	29.0(9.1)
NS II (T)	24.2(9.2)	24.5(9.7)
NSI(V)	41.6(13.3)	42.5(13.6)
NS II (V)	33.7(13.2)	34.2(13.4)

MRI – Subsample had structural MRI; neuroanatomic regions were extracted using FreeSurfer automatic segmentation from T1-weighted images.

ROI: hippocampal volume, subiculum volume, presubiculum volume, entorhinal thickness; all corrected for total intracranial volume

Analyses

Series of hierarchical multiple regression analyses: Block 1 = demographic (age, education, and sex); Block 2 = structural MRI variables (right & left); DVs = delayed recall of Logical Memory, delayed thematic recall of Newcomer stories, delayed verbatim recall of Newcomer Stories

Results

Aim 1 Results

Support for Validity (Relationship with LM) 🗸

Newcomer Stories (NS) significantly correlates with WMS-III Logical memory (LM)

	LM I	LM II	NSI(T)	NS II (T)	NSI(V)	NS II (V)
LMI	_					
LM II	0.847	_				†
NSI(T)	0.698	0.640	-			
NS II (T)	0.706	0.675	0.934	-		
NSI(V)	0.723	0.650	0.926	0.877	-	
NS II (V)	0.699	0.684	0.870	0.916	0.878	-

All sig. at p<.001

Aim 2 Results

Neuroimaging Correlates (External Validity)

Delayed recall of NS and LM were independently associated with:

- Left, but not right, total hippocampal volume & presubiculum volume
 - Only left presubiculum volume when controlling for demographics
 - No significant difference in associations between story types (NS vs. LM)

Controlling for Demographics

L Presubiculum LM: β=.224, p=.01 NS: β=.175, p=.05 L Hippocampus: LM: β=.135, p=.149 NS: β=.163, p=.085

Aim 3 Results

Thematic vs. Verbatim Scoring – Neuroimaging X

No difference between magnitude of association of verbatim compared to thematic scoring

	r	Fisher's Z	р	
	L Presubiculum			
NS II (V)	0.219	0.61	0.27	
NS II (T)	0.205	0.01		
	L Hippocampus			
NS II (V)	0.208	0.42	0.34	
NS II (T)	0.155			

Conclusions

CA1 CA2 CA3 CA4 dentate subject dim

What's with the presubiculum?

- Presubiculum is primary cortical input to entorhinalhippocampal complex
- May be a sensitive early marker of AD; found to be related to memory scores in MCI and AD samples (Carlesimo et al., 2015)

about the woman from South

Boston?

Contact: etrif07@phhp.ufl.edu

Bottom Line:

- NS are a reasonable equivalent alternative to LM in a sample of mostly Caucasian and highly educated older adults
 - NS scores are associated with presubiculum volume above and beyond differences associated with age, education, and gender
- LM and NS do not show significant differential relationships with neuroimaging variables (i.e., both are equally associated with L presubiculum and L hippocampus)
- No differences between NS scoring types in terms of associations with neuroanatomical memory regions