Neuropsychological Correlates of a Virtual Spatial Navigation Task in Older Adults

F.V. Lopez, J.A. Lafo, P.C. Mangal, E. Trifilio, K.R. Thomas, M. Marsiske, R.M. Bauer, & D. Bowers

Department of Clinical and Health Psychology, and Neurology, Fixel Center of Neurological Diseases,
University of Florida, Gainesville, FL

BACKGROUND

- Difficulties with directions or getting lost are common complaints in clinical samples of older adults undergoing neuropsychological evaluation.
- Impairments in spatial learning and memory is an early indicator of medial temporal lobe-hippocampal dysfunction, particularly in amnestic mild cognitive impairment and Alzheimer's disease.
- However, spatial learning and memory is rarely assessed in routine neuropsychological evaluations.
- One of the most used paradigms to study spatial learning and memory abilities in animals is the Morris Water Maze (MWM).
- In recent years, several adaptations of the MWM have been developed for use with human populations such as the virtual computer-generated ARENA.
- Spatial learning and memory is a complex ability with contributions from visual, executive and memory systems; however, little information exists on how this novel task maps onto traditional indices of episodic memory and spatial processing in healthy older adults.
- Thus, the overall goal of the current study was to evaluate performance on ARENA with performance on standardized neuropsychological measures in a sample of healthy older adults.

PARTICIPANTS

Table 1. Characteristics and neuropsychological performance of the study sample (n = 53)

	Mean (SD)	Range
Demographics		
Age (Years)	76.8 (7.37)	60 - 93
Education (Years)	16.6 (2.33)	12 - 20
Gender (M/F)	15/38	_
Wechsler Test of Adult Reading (WTAR)	111 (6.00)	97.0 – 119
Mini-Mental State Examination (MMSE)	29.2 (1.16)	26.0 - 30.0
Neurocognitive Performance		
Judgement of Line Orientation (JOLO)	50.4 (10.1)	23.4 - 70.8
Benton Facial Recognition	57.5 (11.1)	36.0 - 76.0
Spatial Span	49.8 (9.37)	26.1 – 65.9
Family Pictures Immediate Recall	51.2 (10.2)	29.0 - 69.8
Family Pictures (FP) Delayed Recall	51.2 (9.94)	31.5 - 70.9
Visual Reproductions (VR) Immediate Recall	50.9 (9.66)	26.0 - 70.3
Visual Reproductions (VR) Delayed Recall	51.1 (9.54)	17.4 - 64.9
Logical Memory (LM) Immediate Recall	50.5 (9.58)	22.3 - 68.4
Logical Memory (LM) Delayed Recall	51.3 (9.73)	25.9 - 72.3
Hopkins Verbal Learning Test-Revised Immediate Recall	54.4 (10.2)	31.0 - 69.0
Hopkins Verbal Learning Test-Revised Delayed Recall	53.4 (9.28)	30.0 - 64.0
Trail Making Test Condition B	50.2 (9.05)	16.0 - 79.0
Digit Span	51.2 (10.1)	31.6 - 76.3
Digit Symbol	51.2 (10.8)	18.7 - 71.8
Boston Naming Test	57.5 (11.1)	36.0 - 76.0
ARENA Performance		
Total Latency to Find Target	0.00 (.487)	- .830 – 1.14
Total Path Length	0.00 (.403)	- 1.03 – 0.90
Time in Target Quadrant	0.00 (.351)	-1.11 – 0.55

ARENA

Four Quadrants of the Virtual Spatial Navigation Task

Practice Trials

8 Learning Trials

Recognition Trial

ACKNOWLEDGEMENTS

This project was supported in part by funding from NIH including NINDS T32-NS82168 (Lopez; Bowers MPI) and the UF-Fixel Center for Neurological Diseases.

RESULTS

		β	R^2	F	ΔR^2
Model I			.008	.197	
	Spatial Span	030			
	JOLO	077			
Model II			.168	3.57	.148
	Spatial Span	023			
	JOLO	.065			
	LM Delayed Recall	042			
	VR Delayed Recall	470			

Table 3. Unique Predictors of Total Path Latency					
		β	R^2	F	ΔR^2
Model I			.192	4.04	
	Age	.380			
	WTAR	.264			
	Spatial Span	202			
	JOLO	019			
Model II			.357	5.71	.165
	Age	.405			
	WTAR	.236			
	Spatial Span	079			
	JOLO	.107			
	Trail Making Test B	362			
	FP Delayed Recall	242			

Table 4. Uniq	ue Predictors of Time in	n Target Qı	uadrant		
		β	R^2	F	ΔR^2
Model I			.008	.197	
	Spatial Span	029			
	JOLO	078			
Model II			.168	3.57	.148
	Spatial Span	023			
	JOLO	.064			
	LM Delayed Recall	047			
	VR Delayed Recall	470			

CONCLUSION

- Since impairments in spatial navigation may manifest as decrements in safety and functional independence and are associated with pathological aging, the identification of well-validated tasks of spatial learning and memory is critical.
- Findings from the current study revealed that spatial learning and memory as measured by a virtual spatial navigation task were associated with performance on traditional neuropsychological indices of visual episodic memory and set-shifting.
- Limitations include homogenous sample characteristics, small sample size, and indirect measurement of biomarkers presumed to be involved in spatial learning and memory.
- Although additional investigation in larger samples is warranted, the findings offer preliminary evidence for validation and future use of the virtual computer-generated ARENA as a complimentary tool in older adults undergoing neuropsychological evaluation.