Static versus Dynamic Measures of Facial Expression in Parkinson’s Disease

Otto Pedraza1,2, Susan Bongiolatti1,2, Wendelyn Bosch2, Kimberly M. Miller1,2, Didem Gokcay2, and Dawn Bowers1,2

1Department of Clinical & Health Psychology and 2Cognitive Neuroscience Lab, McKnight Brain Institute University of Florida, Gainesville, Florida

INTRODUCTION

“Masked faces” or flattened facial affect is one of the cardinal symptoms of Parkinson’s disease (PD). Neuroanatomically, voluntary facial expressions are mediated by subcortical systems, whereas spontaneous or automatic facial expressions are mediated by subcortical systems (e.g., basal ganglia, limbic). Based on this distinction, PD patients should have difficulty with spontaneous facial expressions, whilst maintaining relatively intact ability to pose facial expressions on command. Several recent studies have challenged this traditional conceptualization, reporting diminished emotional expressivity in PD during posed conditions (Heilman et al., 2000; Bowers et al., 2003). Thus, both neuroanatomical systems of facial expressivity (e.g., voluntary and spontaneous) may be compromised in at least a subset of the PD population.

Methodologically, most studies of voluntary facial emotions in PD have primarily used subjective ratings of “static” images. Recently, we have developed a computerized imaging technique that enables us to quantify “dynamic” movements and changes in facial expressivity over time. This methodology enables us to explore the entire range of facial movement, as an expression evolves across a time lapse, as opposed to a static, snapshot evaluation of the intended facial expression. Furthermore, it is then possible to design specific algorithms to quantify facial expressions in an objective manner independent of any raters. One such algorithm, an “entropy” value, reflects the overall change in movement for each expression.

Purpose/Hypotheses: We recently suggested that the dynamic imaging technique may provide a highly sensitive method to detect differences in emotional expressivity between PD patients and normal controls (NC). The purpose of the present study was to compare static -subjective ratings with the dynamic- objective methodology for quantifying facial expression in PD patients and normal controls. We hypothesized that raters would subjectively judge the intensity and valence of the expressions of PD faces lower than NC faces. Further, entropy values derived from computer imaging would correlate strongly with subjective ratings.

METHOD

PARTICIPANTS:
• 25 Raters, University of Florida undergraduate and graduate students (10 male and 15 female) - Mean age = 25.2

FACIAL STIMULI:
• 4 male PD patients (Hoehn-Yahr < 3) and age- and education-matched Controls were videotaped while producing six voluntary facial expressions. Computerized imaging techniques were used to quantify dynamic facial expressions. An overall movement change value (“entropy”) was obtained for each expression. Pictures of the peak facial expression for each emotion were shown to 25 raters who rated each static expression for intensity and valence. Thus, both objective movement values and subjective ratings were available. Results: As expected, PD patients were not rated as significantly worse than normal controls in terms of intensity or valence of the static facial expressions. Overall, the majority of subjective ratings of static images were not significantly correlated with the entropy or movement changes. Conclusions: The present study suggests that subjective ratings of static images may not be a highly sensitive method for detecting reduced facial expressivity in PD. Further, ratings of static facial expressions are not reliably associated with dynamic entropy values. These findings support the uniqueness of the dynamic-objective method as a sensitive indicator of reduced expressivity.

VIDEOTAPING & DIGITIZING FRAMES:
The 4 PD and 4 controls were videotaped while making voluntary emotional expressions (sadness, anger, disgust, surprise, happiness). Each trial began with the presentation of a card denoting the target emotion. For each expression the initial 30 videoframes were captured, digitized, and saved on the hard drive of a computer. Each digitized frame was 30 ms in duration and represented a 640 X 480 pixel array at 256 levels of gray scale.

LANDMARKING THE FACE:
Sixteen anatomic landmarks were placed on the face using a mouse. This was done on the first frame of an expression sequence. Custom software-in Wave (CHEES) used these landmarks to automatically compute geographic boundaries or regions of interest (ROI) that were applied to all images of a particular expression.

COMPUTING MOVEMENT CHANGE (ENTROPY):
For each expression, pixel intensities of adjacent frames were subtracted to obtain difference images of interest (ROI) that were applied to all images of a particular expression.

RESULTS

Table 1. Mean Static-Subjective Ratings of Facial Expressions

<table>
<thead>
<tr>
<th>Emotion</th>
<th>PD Mean Rating</th>
<th>NC Mean Rating</th>
<th>t-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Happiness</td>
<td>4.89</td>
<td>4.36</td>
<td>4.99</td>
</tr>
<tr>
<td>Sadness</td>
<td>4.12</td>
<td>4.69</td>
<td>-3.17</td>
</tr>
<tr>
<td>Anger</td>
<td>3.60</td>
<td>3.69</td>
<td>-1.31</td>
</tr>
<tr>
<td>Fear</td>
<td>3.95</td>
<td>4.09</td>
<td>-2.12</td>
</tr>
<tr>
<td>Disgust</td>
<td>3.83</td>
<td>4.15</td>
<td>-2.47</td>
</tr>
<tr>
<td>Surprise</td>
<td>4.65</td>
<td>4.96</td>
<td>-3.08</td>
</tr>
</tbody>
</table>

We previously used a computer imaging technique and found that PD patients had reduced facial mobility and were significantly slowed in reaching a peak emotional facial expression. In the present study, we examined subjective ratings of facial emotion and how these subjective ratings corresponded to our dynamic imaging findings (entropy). In contrast to entropy measures, there were no significant differences in subjective ratings of intensity and valence of the static expressions of PD compared to NC faces. Thus, subjective ratings of static images may not be a highly sensitive method for detecting reduced facial expressivity in PD.

Supported by RO1 MH62539